Convex partitions of graphs

Maya Stein Universidad de Chile

with Luciano Grippo, Martín Matamala, Martín Safe

Koper, June 2015

Euclidean convexity

Convex set C: has to contain all points on shortest lines between points in C.

Euclidean convexity

Convex set C: has to contain all points on shortest lines between points in C.

A convexity C on a nonempty set V is a collection of subsets of V, which we call convex sets, such that:

- $\emptyset, V \in \mathcal{C}$.
- Arbitrary intersections of convex sets are convex.
- Every nested union of convex sets is convex.

A convexity space is an ordered pair (V, C), where V is a nonempty set and C is a convexity on V.

- $\emptyset, V \in \mathcal{C}$.
- Arbitrary intersections of convex sets are convex.
- Every nested union of convex sets is convex.

- Standard convexity in a real vector space V: $C \subseteq V$ is convex iff $\forall x, y \in C, \forall t \in [0, 1] : t \cdot x + (1 - t) \cdot y \in C.$
- Order convexity in a poset (V, \leq) : $C \subseteq V$ is order convex iff $\forall x, y \in C$: if $x \leq z \leq y$ then $z \in C$.
- Metric convexity in a metric space (V, d):
 C ⊆ V is convex iff
 ∀x, y ∈ C, {z ∈ V : d(x, z) + d(z, y) = d(x, y)} ⊆ C.

- $\emptyset, V \in \mathcal{C}$.
- Arbitrary intersections of convex sets are convex.
- Every nested union of convex sets is convex.

- Standard convexity in a real vector space V: $C \subseteq V$ is convex iff $\forall x, y \in C, \forall t \in [0, 1] : t \cdot x + (1 - t) \cdot y \in C.$
- Order convexity in a poset (V, \leq) : $C \subseteq V$ is order convex iff $\forall x, y \in C$: if $x \leq z \leq y$ then $z \in C$.
- Metric convexity in a metric space (V, d): $C \subseteq V$ is convex iff $\forall x, y \in C, \{z \in V : d(x, z) + d(z, y) = d(x, y)\} \subseteq C.$

- $\emptyset, V \in \mathcal{C}$.
- Arbitrary intersections of convex sets are convex.
- Every nested union of convex sets is convex.

- Standard convexity in a real vector space V:
 C ⊆ V is convex iff
 ∀x, y ∈ C, ∀t ∈ [0, 1] : t ⋅ x + (1 − t) ⋅ y ∈ C.
- Order convexity in a poset (V, \leq) : $C \subseteq V$ is order convex iff $\forall x, y \in C$: if $x \leq z \leq y$ then $z \in C$.
- Metric convexity in a metric space (V, d): $C \subseteq V$ is convex iff $\forall x, y \in C, \{z \in V : d(x, z) + d(z, y) = d(x, y)\} \subseteq C.$

- $\emptyset, V \in \mathcal{C}$.
- Arbitrary intersections of convex sets are convex.
- Every nested union of convex sets is convex.

- Standard convexity in a real vector space V:
 C ⊆ V is convex iff
 ∀x, y ∈ C, ∀t ∈ [0, 1] : t ⋅ x + (1 − t) ⋅ y ∈ C.
- Order convexity in a poset (V, \leq) : $C \subseteq V$ is order convex iff $\forall x, y \in C$: if $x \leq z \leq y$ then $z \in C$.
- Metric convexity in a metric space (V, d): $C \subseteq V$ is convex iff $\forall x, y \in C, \{z \in V : d(x, z) + d(z, y) = d(x, y)\} \subseteq C.$

• Geodesic convexity (or shortest path convexity): $C \subseteq V(G)$ is convex iff $\forall x, y \in C$, all vertices on shortest x-y paths lie in C.

(Feldman Högaasen 1969, Harary, Nieminen 1981)

- Monophonic convexity (or induced path convexity):
 C ⊆ V(G) is convex iff ∀x, y ∈ C, all vertices on induced x-y paths lie in C.
 (Farber, Jamison 1986)
- Detour convexity (or longest path convexity):
 C ⊆ V(G) is convex iff ∀x, y ∈ C, all vertices on longest x-y paths lie in C.
 (Chartrand, Garry, Zhang 2003)
- P₃-convexity, triangle-path convexity, ...
- Survey P. Duchet 1987, Book I. Pelayo 2013

• Geodesic convexity (or shortest path convexity): $C \subseteq V(G)$ is convex iff $\forall x, y \in C$, all vertices on shortest x-y paths lie in C.

(Feldman Högaasen 1969, Harary, Nieminen 1981)

Monophonic convexity (or induced path convexity):
 C ⊆ V(G) is convex iff ∀x, y ∈ C, all vertices on induced x-y paths lie in C.
 (5 b = 1000)

(Farber, Jamison 1986)

- Detour convexity (or longest path convexity):
 C ⊆ V(G) is convex iff ∀x, y ∈ C, all vertices on longest x-y paths lie in C.
 (Chartrand, Garry, Zhang 2003)
- P₃-convexity, triangle-path convexity, ...
- Survey P. Duchet 1987, Book I. Pelayo 2013

• Geodesic convexity (or shortest path convexity): $C \subseteq V(G)$ is convex iff $\forall x, y \in C$, all vertices on shortest x-y paths lie in C.

(Feldman Högaasen 1969, Harary, Nieminen 1981)

Monophonic convexity (or induced path convexity):
 C ⊆ V(G) is convex iff ∀x, y ∈ C, all vertices on induced x-y paths lie in C.

(Farber, Jamison 1986)

- Detour convexity (or longest path convexity):
 C ⊆ V(G) is convex iff ∀x, y ∈ C, all vertices on longest x-y paths lie in C.
 (Chartrand, Garry, Zhang 2003)
- P₃-convexity, triangle-path convexity, ...
- Survey P. Duchet 1987, Book I. Pelayo 2013

• Geodesic convexity (or shortest path convexity): $C \subseteq V(G)$ is convex iff $\forall x, y \in C$, all vertices on shortest x-y paths lie in C.

(Feldman Högaasen 1969, Harary, Nieminen 1981)

Monophonic convexity (or induced path convexity):
 C ⊆ V(G) is convex iff ∀x, y ∈ C, all vertices on induced x-y paths lie in C.

(Farber, Jamison 1986)

- Detour convexity (or longest path convexity):
 C ⊆ V(G) is convex iff ∀x, y ∈ C, all vertices on longest x-y paths lie in C.
 (Chartrand, Garry, Zhang 2003)
- P₃-convexity, triangle-path convexity, ...
- Survey P. Duchet 1987, Book I. Pelayo 2013

• Geodesic convexity (or shortest path convexity): $C \subseteq V(G)$ is convex iff $\forall x, y \in C$, all vertices on shortest x-y paths lie in C.

(Feldman Högaasen 1969, Harary, Nieminen 1981)

Survey P. Duchet 1987, Book I. Pelayo 2013

- In a connected graph, convex sets are connected.
- Cliques are convex sets.
- Shortest cycles are convex.
- Unions of convex sets might fail to be convex.

- In a connected graph, convex sets are connected.
- Cliques are convex sets.
- Shortest cycles are convex.
- Unions of convex sets might fail to be convex.

- In a connected graph, convex sets are connected.
- Cliques are convex sets.
- Shortest cycles are convex.
- Unions of convex sets might fail to be convex.

- In a connected graph, convex sets are connected.
- Cliques are convex sets.
- Shortest cycles are convex.
- Unions of convex sets might fail to be convex.

- In a connected graph, convex sets are connected.
- Cliques are convex sets.
- Shortest cycles are convex.
- Unions of convex sets might fail to be convex.

- Geodetic closure of a set S: obtained by adding all vertices on shortest paths between vertices of S.
- Convex hull of a set S: smallest convex set containing S.

- Geodetic closure of a set S: obtained by adding all vertices on shortest paths between vertices of S.
- Convex hull of a set S: smallest convex set containing S.

The geodetic number g(G) of a connected graph G is the minimum cardinality of a set $S \subseteq V(G)$ whose closure is V(G). (Harary, Loukakis, Tsouros 1993)

- The Geodetic Number Problem is NP-complete.(Atici 2003)
- Remains NP-complete for bipartite and for chordal graphs. (Dourado, Protti, Rautenbach, Szwarcfiter 2010)
- Polynomial for cographs...

The geodetic number g(G) of a connected graph G is the minimum cardinality of a set $S \subseteq V(G)$ whose closure is V(G). (Harary, Loukakis, Tsouros 1993)

- The Geodetic Number Problem is NP-complete.(Atici 2003)
- Remains NP-complete for bipartite and for chordal graphs. (Dourado, Protti, Rautenbach, Szwarcfiter 2010)
- Polynomial for cographs...

The geodetic number g(G) of a connected graph G is the minimum cardinality of a set $S \subseteq V(G)$ whose closure is V(G). (Harary, Loukakis, Tsouros 1993)

- The Geodetic Number Problem is NP-complete.(Atici 2003)
- Remains NP-complete for bipartite and for chordal graphs. (Dourado, Protti, Rautenbach, Szwarcfiter 2010)
- Polynomial for cographs...

The geodetic number g(G) of a connected graph G is the minimum cardinality of a set $S \subseteq V(G)$ whose closure is V(G). (Harary, Loukakis, Tsouros 1993)

- The Geodetic Number Problem is NP-complete.(Atici 2003)
- Remains NP-complete for bipartite and for chordal graphs. (Dourado, Protti, Rautenbach, Szwarcfiter 2010)
- Polynomial for cographs...

The hull number h(G) of a connected graph G is the minimum cardinality of a set $S \subseteq V(G)$ whose hull is V(G). (Everett, Seidman 1985)

- The Hull Number Problem is NP-complete. (Dourado, Gimbel, Kratochvíl, Protti, Szwarcfiter 2009)
- Remains NP-complete for bipartite graphs.(Araújo, Campos, Giroire, Nisse, Sampaio, Pardo Soares 2011)
- Polynomial for cographs, proper interval graphs, split graphs...

The hull number h(G) of a connected graph G is the minimum cardinality of a set $S \subseteq V(G)$ whose hull is V(G). (Everett, Seidman 1985)

- The Hull Number Problem is NP-complete. (Dourado, Gimbel, Kratochvíl, Protti, Szwarcfiter 2009)
- Remains NP-complete for bipartite graphs.(Araújo, Campos, Giroire, Nisse, Sampaio, Pardo Soares 2011)
- Polynomial for cographs, proper interval graphs, split graphs...

The hull number h(G) of a connected graph G is the minimum cardinality of a set $S \subseteq V(G)$ whose hull is V(G). (Everett, Seidman 1985)

- The Hull Number Problem is NP-complete. (Dourado, Gimbel, Kratochvíl, Protti, Szwarcfiter 2009)
- Remains NP-complete for bipartite graphs.(Araújo, Campos, Giroire, Nisse, Sampaio, Pardo Soares 2011)
- Polynomial for cographs, proper interval graphs, split graphs...

The hull number h(G) of a connected graph G is the minimum cardinality of a set $S \subseteq V(G)$ whose hull is V(G). (Everett, Seidman 1985)

- The Hull Number Problem is NP-complete. (Dourado, Gimbel, Kratochvíl, Protti, Szwarcfiter 2009)
- Remains NP-complete for bipartite graphs.(Araújo, Campos, Giroire, Nisse, Sampaio, Pardo Soares 2011)
- Polynomial for cographs, proper interval graphs, split graphs...

The convexity number con(G) of a connected graph G is the maximum cardinality of a proper convex set of G. (Chartrand, Wall, and Zhang 2002)

- The Convexity Number Problem is NP-complete.(Gimbel 2003)
- Remains NP-complete for bipartite graphs. (Dourado, Protti, Rautenbach, Szwarcfiter 2012)
- Linear for cographs...

The convexity number con(G) of a connected graph G is the maximum cardinality of a proper convex set of G. (Chartrand, Wall, and Zhang 2002)

- The Convexity Number Problem is NP-complete.(Gimbel 2003)
- Remains NP-complete for bipartite graphs. (Dourado, Protti, Rautenbach, Szwarcfiter 2012)
- Linear for cographs...

The convexity number con(G) of a connected graph G is the maximum cardinality of a proper convex set of G. (Chartrand, Wall, and Zhang 2002)

- The Convexity Number Problem is NP-complete.(Gimbel 2003)
- Remains NP-complete for bipartite graphs. (Dourado, Protti, Rautenbach, Szwarcfiter 2012)
- Linear for cographs...

The convexity number con(G) of a connected graph G is the maximum cardinality of a proper convex set of G. (Chartrand, Wall, and Zhang 2002)

- The Convexity Number Problem is NP-complete.(Gimbel 2003)
- Remains NP-complete for bipartite graphs. (Dourado, Protti, Rautenbach, Szwarcfiter 2012)
- Linear for cographs...

A convex *p*-partition of a graph G is a partition of V(G) into *p* convex sets.

- Every graph has a convex 1-partition, and a convex |V(G)|-partition.
- If G has a matching of size m, then G has a convex (|V(G)| m)-partition.

Convex Partition Problem

Given G and p, determine whether G has a convex p-partition.

A convex *p*-partition of a graph G is a partition of V(G) into *p* convex sets.

- Every graph has a convex 1-partition, and a convex |V(G)|-partition.
- If G has a matching of size m, then G has a convex (|V(G)| m)-partition.

Convex Partition Problem

Given G and p, determine whether G has a convex p-partition.

A convex *p*-partition of a graph G is a partition of V(G) into *p* convex sets.

- Every graph has a convex 1-partition, and a convex |V(G)|-partition.
- If G has a matching of size m, then G has a convex (|V(G)| m)-partition.

Convex Partition Problem

Given G and p, determine whether G has a convex p-partition.

A convex *p*-partition of a graph *G* is a partition of V(G) into *p* convex sets.

- Every graph has a convex 1-partition, and a convex |V(G)|-partition.
- If G has a matching of size m, then G has a convex (|V(G)| m)-partition.

Convex Partition Problem

Given G and p, determine whether G has a convex p-partition.
Convex partitions

A convex *p*-partition of a graph *G* is a partition of V(G) into *p* convex sets.

- Every graph has a convex 1-partition, and a convex |V(G)|-partition.
- If G has a matching of size m, then G has a convex (|V(G)| m)-partition.

Convex Partition Problem

Given G and p, determine whether G has a convex p-partition.

Generalization of the Clique Partition Problem.

A clique partition of a graph G is a partition of V(G) into p cliques.

- One of Karp's 21 NP-complete problems.
- Equivalent to *k*-colouring (of the complement of *G*).

A clique partition of a graph G is a partition of V(G) into p cliques.

- One of Karp's 21 NP-complete problems.
- Equivalent to *k*-colouring (of the complement of *G*).

A clique partition of a graph G is a partition of V(G) into p cliques.

- One of Karp's 21 NP-complete problems.
- Equivalent to k-colouring (of the complement of G).

A clique partition of a graph G is a partition of V(G) into p cliques.

- One of Karp's 21 NP-complete problems.
- Equivalent to k-colouring (of the complement of G).

Clique partitions vs Convex partitions

- G has clique (k-1)-partition \Rightarrow G has clique k-partition
- G has convex (p-1)-partition \Rightarrow G has convex p-partition

Clique partitions vs Convex partitions

- G has clique (k-1)-partition \Rightarrow G has clique k-partition
- G has convex (p-1)-partition $\neq G$ has convex p-partition

Convex partitions

- G has convex (p-1)-partition $\neq G$ has convex p-partition
- G has convex (p + 1)-partition $\neq G$ has convex p-partition

Theorem (Artigas, Dantas, Dourado, Szwarcfiter 2011)

The Convex p-Partition Problem is NP-complete for $p \ge 2$.

Follows from NP-completeness of the Clique Partition Problem, if $p \ge 3$:

Theorem (Artigas, Dantas, Dourado, Szwarcfiter 2011)

The Convex p-Partition Problem is NP-complete for $p \ge 2$.

Follows from NP-completeness of the Clique Partition Problem, if $p \ge 3$:

Theorem (Artigas, Dantas, Dourado, Szwarcfiter 2011)

The Convex p-Partition Problem is NP-complete for $p \ge 2$.

Follows from NP-completeness of the Clique Partition Problem, if $p \ge 3$:

Theorem (Artigas, Dantas, Dourado, Szwarcfiter 2011)

The Convex p-Partition Problem is NP-complete for $p \ge 2$.

Follows from NP-completeness of the Clique Partition Problem, if $p \ge 3$:

Theorem (Artigas, Dantas, Dourado, Szwarcfiter 2011)

The Convex p-Partition Problem is NP-complete for $p \ge 2$.

Follows from NP-completeness of the Clique Partition Problem, if $p \ge 3$:

The Convex *p*-Partition Problem is ...

- NP-complete in general
- polynomial for cographs. (Artigas, Dantas, Dourado, Szwarcfiter 2011)
- polynomial for planar graphs, if p = 2. (Glantz, Mayerhenke 2013)

(They use work of Chepoi et al. on the links between

alternating and convex cuts of plane graphs.)

Also, it is known all chordal graphs allow convex *p*-partitions, for all $1 \le p \le n$.

The Convex *p*-Partition Problem is ...

- NP-complete in general
- polynomial for cographs. (Artigas, Dantas, Dourado, Szwarcfiter 2011)
- polynomial for planar graphs, if p = 2. (Glantz, Mayerhenke 2013)

(They use work of Chepoi et al. on the links between alternating and convex cuts of plane graphs.)

Also, it is known all chordal graphs allow convex p-partitions, for all $1 \le p \le n$.

The Convex *p*-Partition Problem is ...

- NP-complete in general
- polynomial for cographs. (Artigas, Dantas, Dourado, Szwarcfiter 2011)
- polynomial for planar graphs, if p = 2. (Glantz, Mayerhenke 2013)

(They use work of Chepoi et al. on the links between alternating and convex cuts of plane graphs.)

Also, it is known all chordal graphs allow convex *p*-partitions, for all $1 \le p \le n$.

The Convex *p*-Partition Problem is ...

- NP-complete in general
- polynomial for cographs. (Artigas, Dantas, Dourado, Szwarcfiter 2011)
- polynomial for planar graphs, if p = 2. (Glantz, Mayerhenke 2013)

(They use work of Chepoi et al. on the links between alternating and convex cuts of plane graphs.)

Also, it is known all chordal graphs allow convex *p*-partitions, for all $1 \le p \le n$. And, all C_n^k have convex 2-partitions.

The Convex *p*-Partition Problem is ...

- NP-complete in general
- polynomial for cographs. (Artigas, Dantas, Dourado, Szwarcfiter 2011)
- polynomial for planar graphs, if p = 2. (Glantz, Mayerhenke 2013)

(They use work of Chepoi et al. on the links between alternating and convex cuts of plane graphs.)

Also, it is known all chordal graphs allow convex p-partitions, for all $1 \leq p \leq n.$

The Convex *p*-Partition Problem is ...

- NP-complete in general
- polynomial for cographs. (Artigas, Dantas, Dourado, Szwarcfiter 2011)
- polynomial for planar graphs, if p = 2. (Glantz, Mayerhenke 2013)

(They use work of Chepoi et al. on the links between alternating and convex cuts of plane graphs.)

Also, it is known all chordal graphs allow convex p-partitions, for all $1 \le p \le n$.

Conjecture (Pelayo 2013)

The Convex *p*-Partition Problem is NP-complete, even when restricted to bipartite graphs.

special case $\rho = 2$. byproduct of Glantz, Mayerhenke 2013: The Convex 2-Partition Problem is polynomial for bipartite graphs.

Theorem (Grippo, Matamala, Safe, St 2015)

special case p = 2:

byproduct of Glantz, Mayerhenke 2013: The Convex 2-Partition Problem is polynomial for bipartite graphs.

Theorem (Grippo, Matamala, Safe, St 2015)

special case p = 2: byproduct of Glantz, Mayerhenke 2013: The Convex 2-Partition Problem is polynomial for bipartite graphs.

Theorem (Grippo, Matamala, Safe, St 2015)

special case p = 2:

byproduct of Glantz, Mayerhenke 2013: The Convex 2-Partition Problem is polynomial for bipartite graphs.

Theorem (Grippo, Matamala, Safe, St 2015)

Convex p-Partition is polynomial for bipartite graphs, for all $p \ge 2$.

Observation:

Convex p-Partition is polynomial for bipartite graphs, for all $p \ge 2$.

Observation:

Convex p-Partition is polynomial for bipartite graphs, for all $p \ge 2$.

Observation:

Convex p-Partition is polynomial for bipartite graphs, for all $p \ge 2$.

Observation:

Convex p-Partition is polynomial for bipartite graphs, for all $p \ge 2$.

Observation:

Convex p-Partition is polynomial for bipartite graphs, for all $p \ge 2$.

Observation:

Convex p-Partition is polynomial for bipartite graphs, for all $p \ge 2$.

Observation:

Fix partition (X, Y), fix X-Y edge xy. Then:

(X, Y) is a convex 2-partition \Rightarrow the v's in X are closer to x than to y and vice versa

Convex p-Partition is polynomial for bipartite graphs, for all $p \ge 2$.

Observation:

Fix (X, Y), fix edge xy. Let $V_{xy} = \{v : d(x, v) < d(y, v)\}$ and $V_{yx} = \{v : d(x, v) > d(y, v)\}$. Then: (X, Y) is a convex 2-partition $\Rightarrow X = V_{xy}$ and $Y = V_{yx}$

Fix (X, Y), fix edge xy. Then: (X, Y) is a convex 2-partition $\Rightarrow X = V_{xy}$ and $Y = V_{yx}$

Fix (X, Y), fix edge xy. Then: (X, Y) is a convex 2-partition $\Rightarrow X = V_{xy}$ and $Y = V_{yx}$

Fix (X, Y), fix edge xy. Then: (X, Y) is a convex 2-partition $\Rightarrow X = V_{xy}$ and $Y = V_{yx}$

In order to decide whether bipartite G has a convex 2-partition, it suffices to check for all edges xy whether V_{xy} and V_{yx} are convex.

Some side remarks

Djokovič 1973

G embeds isometrically into the *r*-dimensional cube, for some $r \Leftrightarrow$ *G* is bipartite and for every edge *xy* of *G*, the sets V_{xy} and V_{yx} are convex.

Define relation on E(G) (G connected): xy ~ vw iff $d(x, v) + d(y, w) \neq d(x, w) + d(y, v)$

Winkler 1984

G embeds isometrically into the *r*-dimensional hypercube, for some $r \Leftrightarrow G$ is bipartite and \sim is transitive on E(G).

Imrich, Klavžar 1997

Let G be bipartite, and $C \subseteq V(G)$ connected and induced. Then C is convex \Leftrightarrow for all edges $e \in E(G[C])$, $f \in E(C, G - C)$ we have $e \not\sim f$.

Go back to our proof...

In order to decide whether bipartite G has a convex 2-partition, it suffices to check for all edges xy whether V_{xy} and V_{yx} are convex.
For $p \geq 3$

Convex p-partition P of G.

Skeleton (*F*; ϕ) of *P*: edge set *F*, map ϕ from *V*(*F*) to [*p*]. IDEA: Check for all sets of $\leq {p \choose 2}$ edges whether they can be the skeleton of some convex *p*-partition of *G*.

For $p \geq 3$

Convex *p*-partition *P* of *G*. Skeleton (*F*; ϕ) of *P*: edge set *F*, map ϕ from *V*(*F*) to [*p*]. IDEA: Check for all sets of $\leq \binom{p}{2}$ edges whether they can be the skeleton of some convex *p*-partition of *G*.

For $p \geq 3$

Convex *p*-partition *P* of *G*. Skeleton (*F*; ϕ) of *P*: edge set *F*, map ϕ from *V*(*F*) to [*p*]. IDEA: Check for all sets of $\leq {p \choose 2}$ edges whether they can be the skeleton of some convex *p*-partition of *G*.

From
$$p = 2$$
 to $p \ge 3$

From p = 2 to $p \ge 3$

From p = 2 to $p \ge 3$

From p = 2 to $p \ge 3$

From p = 2 to $p \ge 3$

From
$$p = 2$$
 to $p \ge 3$

check $\forall F$ (with $|F| \leq {p \choose 2}$) whether F generates convex 'sink sets'. This works if $|F| = {p \choose 2}$. In other cases, there might be more than one sink.

Example:

From p = 2 to $p \ge 3$

Example:

But with some more analysis, we prove that

Let G be a connected bipartite graph, let $F \subseteq E(G)$ and let $\phi: V(F) \rightarrow [p]$. Then there is at most one convex p-partition of G with skeleton $(F; \phi)$. We can find such partition or show it does not exist in polynomial time.

Some questions:

- Is *p*-partition polynomial for planar graphs, for $p \ge 3$?
- Characterization of graphs with convex *p*-partitions?
- Other graph convexities?

Some questions:

- Is *p*-partition polynomial for planar graphs, for $p \ge 3$?
- Characterization of graphs with convex *p*-partitions?
- Other graph convexities?

Some questions:

- Is *p*-partition polynomial for planar graphs, for $p \ge 3$?
- Characterization of graphs with convex *p*-partitions?
- Other graph convexities?

Thank you!