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Convex Not convex
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Convexity spaces

A convexity C on a nonempty set V is a collection of subsets of V ,
which we call convex sets, such that:

∅,V ∈ C.
Arbitrary intersections of convex sets are convex.

Every nested union of convex sets is convex.

A convexity space is an ordered pair (V , C), where V is a
nonempty set and C is a convexity on V .



Convexity space (V , C):

∅,V ∈ C.
Arbitrary intersections of convex sets are convex.

Every nested union of convex sets is convex.

EXAMPLES:

Standard convexity in a real vector space V :
C ⊆ V is convex iff
∀x , y ∈ C , ∀t ∈ [0, 1] : t · x + (1− t) · y ∈ C .

Order convexity in a poset (V ,≤):
C ⊆ V is order convex iff ∀x , y ∈ C : if x ≤ z ≤ y then
z ∈ C .

Metric convexity in a metric space (V , d):
C ⊆ V is convex iff
∀x , y ∈ C , {z ∈ V : d(x , z) + d(z , y) = d(x , y)} ⊆ C .
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Graph convexities

Geodesic convexity (or shortest path convexity):
C ⊆ V (G ) is convex iff ∀x , y ∈ C , all vertices on shortest x-y
paths lie in C .
(Feldman Högaasen 1969, Harary, Nieminen 1981)

Monophonic convexity (or induced path convexity):
C ⊆ V (G ) is convex iff ∀x , y ∈ C , all vertices on induced x-y
paths lie in C .
(Farber, Jamison 1986)

Detour convexity (or longest path convexity):
C ⊆ V (G ) is convex iff ∀x , y ∈ C , all vertices on longest x-y
paths lie in C .
(Chartrand, Garry, Zhang 2003)

P3-convexity, triangle-path convexity, ...

Survey P. Duchet 1987, Book I. Pelayo 2013
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We will stick to:
Geodesic convexity (or shortest path convexity):
C ⊆ V (G ) is convex iff ∀x , y ∈ C , all vertices on shortest x-y
paths lie in C .

In a connected graph, convex sets are connected.

Cliques are convex sets.

Shortest cycles are convex.

Unions of convex sets might fail to be convex.
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Geodetic closure of a set S : obtained by adding all vertices on
shortest paths between vertices of S .

Convex hull of a set S : smallest convex set containing S .

S Closure(S) Hull(S)
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Invariants and their complexity

The geodetic number g(G ) of a connected graph G is the
minimum cardinality of a set S ⊆ V (G ) whose closure is V (G ).
(Harary, Loukakis, Tsouros 1993)

Geodetic Number Problem: Given G and k, determine whether
g(G ) ≤ k .

The Geodetic Number Problem is NP-complete.(Atici 2003)

Remains NP-complete for bipartite and for chordal graphs.
(Dourado, Protti, Rautenbach, Szwarcfiter 2010)

Polynomial for cographs...
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Invariants and their complexity

The hull number h(G ) of a connected graph G is the minimum
cardinality of a set S ⊆ V (G ) whose hull is V (G ).
(Everett, Seidman 1985)

Hull Number Problem: Given G and k, determine whether
h(G ) ≤ k.

The Hull Number Problem is NP-complete. (Dourado,
Gimbel, Kratochv́ıl, Protti, Szwarcfiter 2009)

Remains NP-complete for bipartite graphs.(Araújo, Campos,
Giroire, Nisse, Sampaio, Pardo Soares 2011)

Polynomial for cographs, proper interval graphs, split graphs...
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Invariants and their complexity

The convexity number con(G ) of a connected graph G is the
maximum cardinality of a proper convex set of G .
(Chartrand, Wall, and Zhang 2002)

Convexity Number Problem: Given G and k , determine whether
con(G ) ≥ k.

The Convexity Number Problem is NP-complete.(Gimbel
2003)

Remains NP-complete for bipartite graphs. (Dourado, Protti,
Rautenbach, Szwarcfiter 2012)

Linear for cographs...
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Convex partitions

A convex p-partition of a graph G is a partition of V (G ) into p
convex sets.

Every graph has a convex 1-partition, and a convex
|V (G )|-partition.
If G has a matching of size m, then G has a convex
(|V (G )| −m)-partition.

Convex Partition Problem
Given G and p, determine whether G has a convex p-partition.

Generalization of the Clique Partition Problem.
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Clique partitions

A clique partition of a graph G is a partition of V (G ) into p
cliques.

Clique Partition Problem. Given G and k , determine whether G
has a partition into k cliques.

One of Karp’s 21 NP-complete problems.

Equivalent to k-colouring (of the complement of G ).

G
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Clique partitions vs Convex partitions

Clique Partition Problem Convex Partition Problem
G G

G has clique (k − 1)-partition ⇒ G has clique k-partition

G has convex (p − 1)-partition ̸⇒ G has convex p-partition
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Clique Partition Problem Convex Partition Problem
G G
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Convex partitions

G has convex (p − 1)-partition ̸⇒ G has convex p-partition

G has convex (p + 1)-partition ̸⇒ G has convex p-partition



Complexity of convex partitions

Theorem (Artigas, Dantas, Dourado, Szwarcfiter 2011)

The Convex p-Partition Problem is NP-complete for p ≥ 2.

Follows from NP-completeness of the Clique Partition Problem,
if p ≥ 3:

G

G'

Obtain G ′ from G by adding two universal vertices.
Observe: In G ′, every convex set ̸= V (G ′) is a clique.
For p = 2, reduction to 1-in-3 Problem □
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Complexity of convex partitions

The Convex p-Partition Problem is ...

NP-complete in general

polynomial for cographs. (Artigas, Dantas, Dourado,
Szwarcfiter 2011)

polynomial for planar graphs, if p = 2. (Glantz, Mayerhenke
2013)
(They use work of Chepoi et al. on the links between
alternating and convex cuts of plane graphs.)

Also, it is known all chordal graphs allow convex p-partitions, for
all 1 ≤ p ≤ n.

And, all C k
n have convex 2-partitions.
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Complexity of convex partitions

Conjecture (Pelayo 2013)

The Convex p-Partition Problem is NP-complete, even when
restricted to bipartite graphs.

special case p = 2:
byproduct of Glantz, Mayerhenke 2013: The Convex 2-Partition
Problem is polynomial for bipartite graphs.

Theorem (Grippo, Matamala, Safe, St 2015)

The Convex p-Partition Problem is polynomial for bipartite graphs,
for all p ≥ 2.
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|P1| < |P2|

Fix (X ,Y ), fix edge xy . Then:

(X ,Y ) is a convex 2-partition ⇒ X = Vxy and Y = Vyx

In order to decide whether bipartite G has a convex 2-partition, it
suffices to check for all edges xy whether Vxy and Vyx are convex.



Some side remarks

Djokovic̆ 1973

G embeds isometrically into the r -dimensional cube, for some r ⇔
G is bipartite and for every edge xy of G , the sets Vxy and Vyx are
convex.

Define relation on E (G ) (G connected):
xy ∼ vw iff d(x , v) + d(y ,w) ̸= d(x ,w) + d(y , v)

Winkler 1984

G embeds isometrically into the r -dimensional hypercube, for
some r ⇔ G is bipartite and ∼ is transitive on E (G ).

Imrich, Klavz̆ar 1997

Let G be bipartite, and C ⊆ V (G ) connected and induced. Then
C is convex ⇔ for all edges e ∈ E (G [C ]), f ∈ E (C ,G − C ) we
have e ̸∼ f .
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From p = 2 to p ≥ 3

Naive idea for p ≥ 3:

G

check ∀F (with |F | ≤
(p
2

)
) whether F generates convex ‘sink sets’.

This works if |F | =
(p
2

)
. In other cases, there might be more than

one sink.
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Example:

G



From p = 2 to p ≥ 3

But with some more analysis, we prove that

Let G be a connected bipartite graph, let F ⊆ E (G ) and let
ϕ : V (F ) → [p]. Then there is at most one convex p-partition of G
with skeleton (F ;ϕ). We can find such partition or show it does
not exist in polynomial time.
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- Is p-partition polynomial for planar graphs, for p ≥ 3?

- Characterization of graphs with convex p-partitions?

- Other graph convexities?
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Some questions:

- Is p-partition polynomial for planar graphs, for p ≥ 3?

- Characterization of graphs with convex p-partitions?

- Other graph convexities?



Thank you!


